復合材料中以纖維增強材料應用最廣、用量最大。其特點是比重小、比強度和比模量大。例如碳纖維與環氧樹脂復合的材料,其比強度和比模量均較高強度鋼和鋁合金大數倍,還具有很好的化學穩定性、減摩耐磨、自潤滑、耐熱、耐疲勞、耐蠕變、消音、電絕緣等性能。再如,石墨纖維與樹脂復合,可得到膨脹系數幾乎等于零的材料。
大型熱壓罐纖維增強復合材料的另一特點是各向異性,因此可按制件不同部位的強度要求設計纖維的排列。如以碳纖維或碳化硅纖維增強的鋁基復合材料,在500℃時仍能保持足夠的強度和模量,比未增強的鋁好得多;碳化硅纖維與鈦復合,不但鈦的耐熱性提高,且耐磨損,可用作發動機風扇葉片;碳化硅纖維與氮化硅陶瓷復合,使用溫度可達1500℃,比超合金渦輪葉片的使用溫度高很多。
非金屬基復合材料由于密度小,用于汽車可減輕重量、提高車速、節約能源。如用碳纖維增強塑料制成的車身和發動機罩,其重量可比金屬制的輕一半以上;用碳纖維與玻璃纖維混合制成的復合材料片彈簧,其剛度和承載能力與重量大五倍多的鋼片彈簧相等。
碳纖維復合材料各組分經工藝加工后所表現出的性能不是幾種材料各自性能的簡單混合,
而是按照復合效應形成新的性能,這種復合效應是復合材料所獨有的特性。
碳纖維復合材料結構在形成過程中有組分材料之間復雜的物理與化學變化,
構件性能對工藝方法、工藝參數、工藝過程等的依賴性大,同時也在成形過程中很難準確地控制工藝參數。